Могут ли высотные здания иметь околонулевое потребление энергии? (Часть 1)
Алессандро Сандэлевски, дипломированный инженер, почетный член CIBSE, ASHRAE, эксперт LEED GA, независимый консультант
В наше время высотные здания строятся повсеместно во всех крупных городах мира. Например, в странах Европейского союза действующие законы требуют, чтобы все здания, вводимые в эксплуатацию после 2020 года, имели околонулевое потребление энергии (NZEB). Возможно ли построить высотное здание с околонулевым потреблением энергии? Чтобы ответить на вопрос, рассмотрим специфику проектирования систем ОВиК высотных зданий и концептуальные решения построения инженерных систем, которые позволяют достичь околонулевого потребления энергии.
Европейская директива 2010/31/ЕС по энергоэффективности зданий (Directive 2010/31/EU on the energy performance of buildings – EPBD) вводит понятие здания с околонулевым потреблением энергии (Near Zero Energy Buildings – NZEB). Ст. 9 данной директивы вводит следующие требования к государствам – членам ЕС:
- Все здания, принадлежащие общественным организациям и государственным институтам, вводимые в эксплуатацию после 31 декабря 2018 года, должны иметь околонулевое потребление энергии.
- После 31 декабря 2020 года все здания, вводимые в эксплуатацию, должны иметь околонулевое потребление энергии.
При этом государства – члены ЕС самостоятельно разрабатывают национальные стандарты и определяют, какие здания можно отнести к NZEB. В Италии, например, в соответствии с декретом от 26 июня 2015 года зданием с околонулевым потреблением энергии может считаться здание, в котором 50 % энергопотребления систем отопления, вентиляции, кондиционирования и ГВС обеспечивается за счет возобновляемых источников энергии.
Оставив в стороне юридические тонкости национальных стандартов, рассмотрим общее значение терминов ZEB, nZEB и NZEB.
ZEB (Zero Energy Building) – здание с нулевым потреблением энергии
Здания с нулевым потреблением энергии полностью покрывают свою потребность в энергии за счет возобновляемых источников. По сути, это утопия, поскольку при существующих технологиях энергия из возобновляемых источников не может быть доступна круглый год в достаточном количестве. Например, солнечная энергия недоступна в ночное время и ограниченно доступна зимой. При этом системы аккумуляции энергии слишком дороги и требуют значительного пространства в здании для размещения.
nZEB (Net Zero Energy Building) – здание с чистым нулевым потреблением энергии
Этот тип зданий подключен к внешним сетям электроснабжения и в случае профицита генерации энергии от возобновляемых источников передает излишки в сеть, а в случае дефицита генерации энергии от возобновляемых источников потребляет энергию из внешних сетей. При этом итоговый годовой баланс потребления энергии из внешних сетей и передачи энергии во внешние сети должен быть равен нулю. В отличие от ZEB, здания с чистым нулевым потреблением энергии в периоды дефицита генерации энергии от возобновляемых источников энергии могут потреблять энергию от сжигания ископаемых видов топлива, поскольку в ночное время (наступает одновременно на 2,5 континентах – Европа, Африка и Ближний Восток) только этот вид генерации энергии может обеспечить требуемый уровень потребления. И не стоит забывать о серьезных проблемах с пространством для размещения оборудования для генерации энергии от возобновляемых источников – при дефиците свободных площадей достичь чистого нулевого потребления энергии невозможно. Стоит упомянуть и размер капитальных затрат на реализацию nZEB-решений: достижение нулевого потребления – это асимптотический процесс (закон убывающей отдачи, Шеппард, 1974 год).

NZEB (Nearly Zero Energy Building) – здания с околонулевым потреблением энергии
Попытаемся определить, что же именно считать «околонулевым». В Италии для производства 1 000 кВт•ч/год в среднем требуется 6–7 м2 фотоэлектрических панелей. Энергия от возобновляемых источников всегда должна анализироваться в привязке к площади, занимаемой оборудованием для генерации.
Для понимания термина «околонулевое» используем два коэффициента – SFVeq и PtZ.
- SFVeq (Equivalent Photovoltaic Surface) – это эквивалентная площадь фотоэлектрических модулей. Другими словами, это площадь фотоэлектрических модулей, необходимая для покрытия энергопотребления здания в годовой перспективе и достижения показателей чистого нулевого потребления энергии. Для того чтобы рассчитать SFVeq здания, необходимо разделить его годовое энергопотребление на энергию, получаемую за год от 1 м2 фотоэлектрического модуля в регионе, где расположено здание. Определить эквивалентную площадь фотоэлектрических модулей для здания, потребляющего только природный газ и энергию от внешней сети электроснабжения, можно по формуле (1) (см. Формулы).
- PtZ (Proximity to Zero) – коэффициент близости к нулю. Этот коэффициент показывает отношение площади фактически установленных фотоэлектрических модулей к площади фотоэлектрических модулей, необходимых для достижения чистого нулевого потребления энергии зданием, и позволяет оценить, насколько близко здание к «околонулевому» потреблению (см. формулу (2)).
Энергомоделирование для офисных зданий и отелей стандартной высоты показывает, что в Италии достижение 100 %-ного PtZ на практике невозможно. Если в расчете учитывать все системы здания, потребляющие электроэнергию (лифты, эскалаторы и прочее), то показатель 50–60 % уже можно считать успешным результатом.
В высотных зданиях обеспечить близость к нулевому потреблению еще сложнее в силу специфики инженерных систем, описанной далее по тексту.
Классификация высотных зданий
Высотные здания могут быть классифицированы согласно терминологии ASHRAE как: высотные – выше 100 м; супервысотные – выше 300 м; мегавысотные – выше 600 м; убервысотные (термин не является официальным) – выше 1 000 м.
При проектировании высотных зданий особое внимание нужно уделить, во-первых, расчету теплопоступлений и теплопотерь, во-вторых, эффекту тяги и, в-третьих, проектированию гидравлических систем.
Расчет теплопоступлений и теплопотерь
Температура и влажность наружного воздуха, атмосферное давление и плотность воздуха изменяются по мере увеличения высоты над уровнем моря. Стандартный подход, когда эти данные принимают едиными для всего здания, не проходит в случае высотных зданий. Расчет температуры, атмосферного давления и плотности воздуха выполняют по формулам (3)–(5), где за нулевую высоту принимают высоту над уровнем моря.
В качестве примера приведем распределение показателей для высотного здания в г. Джидда, Саудовская Аравия (высота 0 м над уровнем моря). Согласно данным ASHRAE, температура воздуха для данного региона 41 °C по сухому термометру и 30 °C по влажному термометру (табл. 1).
Таблица 1
Характеристики наружного воздуха на разных высотных отметках, г. Джидда, Саудовская Аравия
Если принять параметры воздуха в помещении 24 °C при относительной влажности 50 %, то в момент времени, когда на отметке уровня моря показатели наружного воздуха (теоретически) будут равны показателям воздуха в помещении, отклонения значений температуры и влажности наружного воздуха по высоте здания указаны в табл. 2.
Таблица 2
Разница температуры и влажности воздуха в помещении и наружного воздуха для высотного здания в г. Джидда, Саудовская Аравия
Очевидно, что стандартный подход, при котором параметры наружного воздуха принимаются без учета их изменений по высоте здания, приведет к тому, что в теплый период года система будет переразмеренной (большой запас мощности), а в холодный период года система будет иметь дефицит мощности.
В следующей статье будет рассмотрено влияние эффекта тяги и гидравлических систем в высотных зданиях, а также дан ответ на вопрос, может ли высотное здание иметь околонулевое потребление энергии.
Перевод и техническая редактура выполнены В. В. Устиновым
По материалам: https://www.abok.ru